Hot melt extrusion and its use in the manufacturing of pharmaceutical dosage forms

December 1-2, 2009

Modeling of the extrusion process and prediction of scale-up and transfer behaviour

Adam Dreiblatt
Extrusioneering International, Inc.
Presentation outline

- Modeling strategy
- Simulation of hot melt extrusion process
- 1D simulation case study
- Transfer technology (i.e. “scale-up”)
- Summary
Why modeling?

- Limited availability and cost of API’s
 - Evaluate alternate machine configurations
 - Evaluate process variables (virtual DOE)
- Obtain data not otherwise available
- Troubleshoot problems
- Scale-up
Simulation strategy

- Several options available
 - 3D modeling
 - Response surface methodology
 - 1D modeling
3D modeling

3D finite element modeling
2D flow analysis network

- Rigorous treatment
- Accurate, detailed
- Limited to unit ops
- Resource intensive
Response surface methodology

- Rigorous treatment
- Accurate
- Limited extrapolation
- Resource intensive

Image courtesy Bernhard Van Lengerich, with permission
1D simulation

- Approximations
- Versatile
- Cost effective
- Integrated cross-section

Image courtesy Mahesh Gupta (Peldom), with permission
Modeling basis

- Extruders *cannot* differentiate between pharma polymers and "traditional" thermoplastics
 - API’s that do not melt are no different than filled thermoplastic compounds.
 - Pharma solid dispersion is no different than polymer alloy.

- The extruder can only detect viscosity, degree-of-fill, pressure, etc...
Modeling basis

- Hot melt extruder geometry is identical to “traditional” polymer machinery – from the perspective of the melt in the screw channel (intermeshing, co-rotating Erdmenger self-wiping profile).
- Hot melt extrusion applications can use existing modeling and simulation tools available for “traditional” polymer processing.
- Interpretation of results is critical to the successful use of these tools...
Modeling challenge

Complex geometry + Complex rheology

Precludes comprehensive treatment of complete process
1D simulation example

$T_F = \text{Feed temperature of melt}$

$T_B = \text{Inner barrel surface temperature}$

Density, Specific Heat = constant, independent of melt temp.

Melt viscosity = strong function of temperature and shear rate
Mass, momentum balance

\[q = AN + \frac{B}{\eta} \cdot \frac{dp}{dz}, \quad 0 < z < L \]

\(q = \) Volumetric melt flow (assumed uniform melt density)
\(N = \) Screw rotation speed
\(A, B = \) Characteristic for each screw component, function of \((z)\)
Melt viscosity = strong function of temperature and shear rate
Energy balance

\[q \frac{dT}{dz} = C\phi\eta N^2 - DU (T - T_B), \quad 0 < z < L \]

\(\phi = \) Screw fill level
\(U = \) Heat transfer coefficient between melt and barrel
\(T_B = \) Inner barrel surface temperature
\(C, D = \) Known functions of geometry and physical properties
Calculate $p(z)$ and $T(z)$, $0 < z < L$

Assumes p, T are function of z only

$T = “cross-section average temperature”$
Solving balance equations

Boundary condition 1 \[p = p_{\text{DIE}} \] at \[z = L \]

Boundary condition 2 \[T = T_F \] at \[z = 0 \]

Problems:
A,B = Complex function of (z), different for each screw component
\(P(z) \) = Function of viscosity (strong function of temperature)
\(T(z) \) = Function of screw fill level (\(\phi = 1 \) if \(p > 0 \), \(\phi < 1 \) if \(p = 0 \))
Alternative solution

Divide each screw component into **computational elements**

- More subdivisions assigned to “active” screw types
- \(N = \) total number of computational elements
All coefficients, processing variables are a function of (z)

Continuous Variables

- $p(z), 0 < z < L$
- $T(z), 0 < z < L$

Discrete Point Values

- $p_i, i = 0, 1, 2, \ldots, N$
- $T_i, i = 0, 1, 2, \ldots, N$
Alternative solution

Boundary condition 1 \[p_N = p_{\text{DIE}} \]

Boundary condition 2 \[T_0 = T_F \]

\[
q = A_i N + \frac{B_i}{\eta_i} \cdot \frac{\Delta p_i}{\Delta z_i}, \quad \text{for } i = 1, 2, 3, \ldots N
\]

\[
q \frac{\Delta T_i}{\Delta z_i} = C_i \phi_i \eta_i N^2 - D_i U_i (T_i - T_B), \quad \text{for } i = 1, 2, 3, \ldots N
\]
Iteration procedure – step 1

Assume temperature profile T_i, $(i = 0, 1, 2, \ldots N)$
Iteration procedure – step 2

Compute pressure drop through die/orifice (P_{DIE})
Iteration procedure - step 3

Pressure equation solved from $i = N-1$ to $i = 1$

Initial condition at $i = N$

Compute viscosity at assumed T

Compute screw fill level
Iteration procedure – step 4

Step 4: Temperature equation solved from $i = 1$ to $i = N - 1$

Initial condition at $i = 0$

Based on computed screw fill level
Compare computed results

Computed $T(z)$ compared to assumed $T(z)$

If T, P profiles are within specified tolerance criteria

✔ Iteration ends

✔ Compute residence time, power, etc.
Compare computed results

Computed $T(z)$ compared to assumed $T(z)$
If T, P profiles *do not* meet specified tolerance criteria
 ✓ Assume new temperature profile
 ✓ Repeat calculations until convergence
Simulation case study

- 34mm lab-scale extruder
 - Leistritz LSM34, L/D = 35
 - 300 rpm screw speed
 - 12.5 kg/hr feed rate

- Raw materials ‘pre-granulated’
 - Polymer
 - Plasticizer
 - Surfactant
 - API
Define geometry

- Machine type
 - Free volume
 - Available power
 - Geometric parameters
- Feeding and venting positions
- Screw configuration
- Die geometry
Select an Extruder from the list.

Click on an extruder to enable the Shaft selection tab. Double-click to jump directly to shaft selection.
Define materials

- Polymers
 - Solid state thermal and physical properties
 - Melt thermal and rheological properties
 - Rheological model

- Solid additives
 - Solid state thermal and physical properties
 - Non-melting “inert” filler as API placebo
 - Rheological model

- Liquid additives
 - Plasticizing effect
Material Editor

Materials Database: Pharma Materials

ID: 3 Access: Open Modified: 10/17/09

Materials Database Tools

Name
Pharma Materials Update

New... Add New Material...

Delete... Backup...

Restore...
Define extrusion process

- Screw speed
- Feed position
- Feed temperature
- Feed rate
- Temperature profile
Extrusioneering International, Inc.

Processing Conditions

- **Polymers:** CI-991 Placebo
- **State:** Solid
- **Throughput Rate:** 12.5 kg/h
- **Screw Speed:** 300.0 rpm
- **Head Pressure:** 10.00 bar

Barrel Set Temperature Profile

1. FEED 3.5D
2. MAIN 3.5D
3. MAIN 3.5D
4. MAIN 3.5D
5. MAIN 3.5D
6. MAIN 3.5D
7. MAIN 3.5D
8. MAIN 3.5D
9. VENT 3.5D
10. MAIN 3.5D

Feed Port

- **Feed Temperature:** 25.00 °C
- **Feed Pressure:** 0 bar

Position: 29.0 / 91.0 mm

Processing Conditions data verification status: OK
Analyze results

- Specific energy
- Discharge temperature
- Discharge pressure
- Residence time
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Temperature</td>
<td>187.2 °C</td>
</tr>
<tr>
<td>Head Pressure</td>
<td>10.0 bar</td>
</tr>
<tr>
<td>Average Residence Time</td>
<td>36.8 s</td>
</tr>
<tr>
<td>Unmelted Polymer at Exit</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Torque per Shaft</td>
<td>17.3 N·m</td>
</tr>
<tr>
<td>Mechanical Power Input</td>
<td>1.09 kW</td>
</tr>
<tr>
<td>Specific Energy Input</td>
<td>0.087 kW·h/kg</td>
</tr>
<tr>
<td>Viscous Dissipation</td>
<td>0.55 kW</td>
</tr>
<tr>
<td>Heat Transfer to Barrel</td>
<td>-0.30 kW</td>
</tr>
<tr>
<td>Units System</td>
<td>International System of Units (SI)</td>
</tr>
</tbody>
</table>

12.5 kg/h @ 300 rpm

Head Temperature: 187.2 °C

Pressure Rise: 10.0 bar

Fill Factor: 36.0 %

Melting Length: 2.65 D

Model: JKS
Calibration of model

- Practical use of 1D simulation requires “calibration” of model results using empirical coefficients to match actual process data
 - Melting
 - Specific energy
 - Melt temperature
Extrusioneering International, Inc.
Axial profiles

- Degree-of-fill
- Melting
- Pressure
- Temperature
- Specific energy
- Residence time
- Viscosity
- Mixing
Mechanical Power Input

Power (kW)
Correlation of results

Extrusion Parameters → Key System Parameters → Product Quality Attributes

- **Machine Parameters**
 - Free Volume
 - Screw Configuration
 - Die Geometry

- **Process Parameters**
 - Screw Speed
 - Feed Rate
 - Barrel Temperature

- **Specific Energy**
 - Mechanical
 - Thermal
 - Melt Temperature
 - Residence Time Pressure

- **Physical Properties**
 - Crystallinity
 - Morphology
 - Bioavailability

- **Rheology**
 - Mol. weight
 - Mw Distribution

- **Other**
 - Dissolution
 - Color

Ref: Bernhard Van Lengerich, PhD Thesis, Technical University of Berlin
Scale-up

- Lab-scale process from 34mm machine was transferred to 50mm production line
 - Leistritz ZSE50 extruder, L/D=36
 - Volume difference = 4X = 50 kg/hr
 - Production machine different D_o/D_i
- Product requirement = 100% amorphous
- API has extreme thermal sensitivity, degradation level not to exceed lab scale
Melt Viscosity

Viscosity (kPAs)

- Viscosity decreases significantly from approximately 0.24 to 0.14 kPAs.

Diagram shows a linear decrease in melt viscosity along the length of an extruder.
Prediction of position where melting is completed = 547.5mm
Material temperature where melting is completed = 136 °C
Melt residence time can be identified (23 sec)
Summary

12.5 kg/h @ 300 rpm

- **Discharge Temperature:** 187.2 °C
- **Head Pressure:** 10.0 bar
- **Average Residence Time:** 36.8 s
- **Unmolten Polymer at Exit:** 0.0%
- **Torque per Shaft:** 17.3 N·m (14.1% max torque)
- **Mechanical Power Input:** 1.09 kW (14.1% max power)
- **Specific Energy Input:** 0.087 kW·h/kg (0.09 kW·h/kg net)
- **Viscous Dissipation:** 0.55 kW (3.1% on tip gaps)
- **Heat Transfer to Barrel:** -0.30 kW

Units System: International System of Units (SI)

Model: JKS

Summary

50.0 kg/h @ 300 rpm

- **Discharge Temperature:** 184.2 °C
- **Head Pressure:** 10.0 bar
- **Average Residence Time:** 48.2 s
- **Unmolten Polymer at Exit:** 0.0%
- **Torque per Shaft:** 71.2 N·m (7.9% max torque)
- **Mechanical Power Input:** 4.47 kW (7.9% max power)
- **Specific Energy Input:** 0.089 kW·h/kg (0.09 kW·h/kg net)
- **Viscous Dissipation:** 1.97 kW (1.7% on tip gaps)
- **Heat Transfer to Barrel:** -0.68 kW

Units System: International System of Units (SI)

Model: JKS

Image of a software interface showing results of extrusion testing.
Prediction of position where melting is completed = 920mm
Material temperature where melting is completed = 135 °C
Melt residence time can be identified (33.6 sec)
Summary

- Commercial process successfully launched
 - Lower discharge temperature and narrower RTD than lab-scale process (also lighter color)
 - Different extruder geometry and screw design
 - Specific energy same as lab-scale

- Product specifications (crystallinity, degradation products, dissolution) can be correlated with specific energy, residence time and thermal history
1D process simulation for hot melt extrusion applications is commercially available and provides a cost-effective tool to probe deeper inside the extruder.

- Expensive and scarce API’s (kg quantities)
- Scale-up (translation between OEM machinery)
- Product and process optimization

These simulation tools can be used to model both solid dispersion and controlled release oral solid dosage forms.
Summary

- Rheological characterization for polymer/API compositions remains a challenge for any simulation/modeling technique
Thank You!